

Manuscript for submission to GChron

Emplacement age of the Sevier Gravity Slide, Utah, USA 1 Tiffany Rivera¹, McKenna Holliday², Brian Jicha³, David H. Malone⁴, Michael J. Braunagel⁵, V. 2 Alex Bonilla Franco⁶, Robert F. Biek⁷, W. Ashley Griffith⁸, David B. Hacker⁹ 3 4 ¹ Department of Geological Sciences, University of Missouri, Columbia, 65201, USA 5 ²Department of Geological University Sciences, of Florida, Gainesville, 32603, USA 6 ³Department of Geoscience, University of Wisconsin-Madison, Madison, 53706, USA 7 ⁴Department of Geography, Geology and the Environment, Illinois State University, Normal, 61790, USA 8 ⁵Department of Earth & Environmental Sciences, University of Minnesota Duluth, 55812 9 ⁶Department of Geological Sciences, Jackson School of Geosciences, University of Texas, Austin, 78712, USA 10 ⁷Utah Geological Survey, Salt Lake City, 84116, USA, retired 11 ⁸School of Earth Sciences, Ohio State University, Columbus, 43210, USA 12 ⁹Department of Geology, Kent State University, Kent, 44242, USA 13 14 Correspondence to: Tiffany A. Rivera (trivera@missouri.edu) 15 16 17 18 19 20 21 22 23

https://doi.org/10.5194/egusphere-2024-2899 Preprint. Discussion started: 25 September 2024 © Author(s) 2024. CC BY 4.0 License.

Manuscript for submission to GChron

Abstract. The Marysvale volcanic field in southwestern Utah hosts three large volume gravity slides: the Sevier (SGS), the Markagunt (MGS), and the Black Mountains (BGS). The gravity slides are composed of lahar deposits, lava flows, and ash-flow tuffs erupted from former stratovolcanoes and other vents during the Oligocene and Miocene. The ash-flow tuffs are prime targets for dating to constrain the age of the gravity slides because some ash-flow tuffs are deformed within the slides, whereas others are undeformed and cap the slides. Furthermore, the gravity slides produced pseudotachylyte during slide motion, a direct indicator for the timing of each slide. This work provides new 40 Ar/ 39 Ar dates for several ash-flow tuffs and pseudotachylyte for the SGS, along with U/Pb zircon dates for one deformed tuff and overlying alluvium at the slide plane. Results show that the slide was emplaced at 25.25 ± 0.05 Ma and was immediately followed by the eruption of the Antimony Tuff at 25.19 ± 0.02 Ma. The model presented here suggests that the intrusion of magma related to the Antimony Tuff acted as a triggering mechanism for the slide, and that slide movement itself led to decompression melting and eruption of the Antimony Tuff. This sequence of events occurred on a geologically rapid timescale and may have been virtually instantaneous.

Short summary. The timing of an ancient gravity slide that originated in the Marysvale volcanic field (Utah) is constrained using ⁴⁰Ar/³⁹Ar dating of pseudotachylyte, a friction-induced glass that is generated during slide movement, and the volcanic tuffs that were displaced by the slide and those that overly the slide mass. Our results suggest that the Sevier gravity slide occurred at 25.25 Ma. The removal of such a large volume of material likely allowed for the eruption of the Antimony Tuff at 25.19 Ma.

1 Introduction

Gravity slides are large volume mass movements that typically slide over shallowly dipping (≤ 3°) paleosurfaces. The Heart Mountain slide (Wyoming) and the recently described Markagunt Gravity Slide (Utah) were coeval with volcanism and displaced km-thick sheets of volcanic rocks (Biek et al., 2022; Malone, 1995; Malone et al., 2017). A characteristic feature of gravity slides is that they maintain the original stratigraphy within the allochthonous sheets. The presence of volcanic materials offers opportunities to constrain the emplacement age using several geochronological techniques. Furthermore, these megaslides are emplaced so rapidly that they can generate pseudotachylyte, a friction induced melt hypothesized to have formed from the rocks involved in sliding. Geochronology of the pseudotachylyte can directly constrain the age of the slide.

The Oligocene-Miocene Marysvale gravity slide complex (MGSC) in southwestern Utah is unique in that it contains multiple, gigantic individual gravity slides, including the Sevier gravity slide (SGS), the 23 Ma Markagunt gravity slide (MGS; (Holliday et al., 2022)), and the Black Mountain gravity slide (BGS) (Bick et al., 2019, 2022). Despite the coeval nature of the MGSC and the Marysvale Volcanic Field (MVF), the causality of gravity slide emplacement is still unclear. Slide initiation may be due to magmatic doming within the gravity slide's breakaway region, laccolith emplacement, or the accumulation of volcanic material on weak strata may overload the crust and stimulate widespread slope failure (Hacker et al., 2018). Recent work has improved the understanding about source

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87 88

89

90

91

92

93

94

Manuscript for submission to GChron

3

material and kinematics of these landslides (Braunagel et al., 2023; Hacker et al., 2023; Holliday et al., 2022; Zamanialavijeh et al., 2021). Notably, Holliday et al. (2022) obtained ⁴⁰Ar*/³⁹Ar dates on the ash-flow tuffs and pseudotachylyte from the MGS, then employed a novel Bayesian statistical optimization age model to constrain an emplacement age. This work builds upon the previous geochronology study of the MGS to determine the emplacement age of the SGS through ⁴⁰Ar*/³⁹Ar dating of pseudotachylyte formed during slide movement and of the bounding ash-flow tuffs. Our results unambiguously tie pseudotachylyte formation to slide emplacement, affirming the catastrophic nature of the slides, while simultaneously constraining the timing of slope failure relative to volcanic eruptions, which resolves outstanding questions surrounding causality of gravity slides.

2 Geologic background

Early investigations in the MVF have provided the foundation for the discovery of the MGSC and unrayeling the associated stratigraphy as described in Biek et al. (2019). Geochemical investigations of the volcanic units led to the identification of the calc-alkaline nature of the older rocks and bimodal basalt and high-silica rhyolite younger rocks (Rowley et al., 1975; Steven et al., 1977; Wender and Nash, 1979), and extensive mapping initiatives were undertaken to unravel the geology, mineral resources, and economic potential of the region (e.g., Steven et al., 1977; Cunningham and Steven, 1979; Steven et al., 1984; Palmer and Walton, 1990; Rowley et al., 1994; Rowley et al., 1998; Granger and Bauer, 1950; Taylor et al., 1951; Kerr et al., 1957; among many others). This foundational body of work contributes to understanding the spatial distribution of the volcanic centers and the stratigraphic relationships between major eruptive units. The MVF straddles the boundary between the Colorado Plateau and the Basin and Range province and covers >10,000 km², with an estimated total volume of 12,000 km³ (Rowley et al., 1998), and hosts three calderas: Three Creeks (~27 Ma), Monroe Peak (23–22 Ma), and Mount Belknap (22–18 Ma). However, most of the eruptive products in the MVF have an unknown source, presumably because many vent areas are now buried or overprinted by younger calderas. The breakaway regions for each gravity slide are inferred to be entirely within the MVF, and suggest a genetic connection to local volcanic activity. The breakaway zones of the SGS and MGS are overprinted by younger calderas (Rowley et al., in press; Biek et al., 2019, 2022), and the breakaway of the BGS has presumably been eroded over the Mineral Mountains batholith.

Initiation of MVF volcanism is associated with Farallon slab rollback and southward migration of volcanism across western North America. Peak volcanic (23–32 Ma) activity consisted of intermediate calc-alkaline eruptions (Rowley et al., 1998; 2002; in press) which account for ~90% of the MVF volcanic material contained in the Bullion Canyon Volcanics and the Mount Dutton Formation (Rowley et al., 1994). The transition to bimodal basalt and high-silica rhyolite volcanism occurred ca. 22 Ma and is linked to the transition from a subduction-style regime to Basin and Range extension (Rowley et al., 1997). Basaltic eruptions have continued into the late Pleistocene (Biek et al., 2015; Marchetti et al., 2020).

Recognition of the MGSC began with the early characterization of the Markagunt Megabreccia on the Markagunt Plateau (Anderson, 1993). Described as isolated allochthonous masses (megabreccia), the Markagunt Megabreccia consists of monolithic blocks and heterolithologic complexes as large as 2.5 km² and 50–200 m thick

96

97

98

99

100

101

102

103

104

105

Manuscript for submission to GChron

4

(Sable and Maldonado, 1997). While these large masses were identified as gravity slides, they were interpreted to be emplaced in several separate events from multiple sources (Anderson, 1993; Sable and Maldonado, 1997). However, Hacker et al. (2014) and Biek et al. (2014; 2015) reinterpreted the Markagunt Megabreccia as part of a catastrophically emplaced single slide mass based on new field evidence and mapping, and termed this the Markagunt gravity slide (MGS). The Sevier gravity slide (SGS) was proposed in 2017 (Biek et al., 2017), and formally recognized in Biek et al. (2019). Along the western flank of the SGS, Braunagel et al. (2023) characterized notable structural features that indicate intense deformation, clastic dikes of basal material into overlying rocks, pseudotachylyte, and cataclastic basal zones. Loffer (2024) identified several pseudotachylyte sites within the SGS, and proposed an SGS maximum depositional age of 25.5 Ma using detrital zircon extracted from the basal layer of the slide in two locations.

undeformed rocks Osiris Tuff (23.3 Ma) overlying angdon Mtn Fn Lava Flow (24.7 Ma) Antimony Tuff (25.2 Ma) SGS pseudotachylyte (25.3 Ma) Tuff of Tibadore (25.4 Ma) eformed rocks within slide Alluvium 89 Kingston Canyon Tuff (26.0 Ma) Three Creeks Tuff (~27 Ma)

Figure 1: Sevier gravity slide location (white boundary) shown with Monroe Peak Caldera (MPC) and sampling locations. To the right, a simplified stratigraphic section (not to scale) of the Mount Dutton Formation (light brown) with interspersed

https://doi.org/10.5194/egusphere-2024-2899 Preprint. Discussion started: 25 September 2024 © Author(s) 2024. CC BY 4.0 License.

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

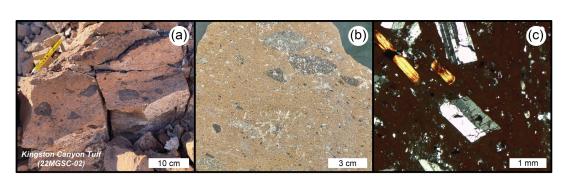
129

130

131

Manuscript for submission to GChron

5


ash-flow tuffs and other rocks investigated in this study. The allochthonous block of the SGS includes the within slide deformed ash-flow tuffs and pseudotachylyte, whereas the overlying undeformed ash-flow tuffs post-date slide emplacement. Locations labeled with "ZR" indicate samples collected for zircon U/Pb dating. © Google Earth, using 2024 imagery of Airbus, Landsat, Conpernicus.

3 Materials and methods

The units investigated here are grouped by their stratigraphic position relative to the SGS. Ash-flow tuffs 'within' the slide material are deformed and were displaced by slide motion as an allochthonous block. Ash-flow tuffs 'above' the slide are all undeformed by and postdate the SGS (Fig. 1). The Kingston Canyon Tuff (samples 21MGSC-02 and KCT; Fig. 2) is a densely welded, red-purple, lithic tuff. Plagioclase is the major mineral phase, with minor hornblende and biotite. Lithic components consist of mafic igneous rocks. A sample of the alluvial facies of the Mt. Dutton Formation overlying the KCT sample was collected to examine the detrital zircon record (MVC6-21-10-16-2; Braunagel et al., in review). The tuff of Tibadore (21MGSC-01, Fig. 2) is a crystal poor, densely welded lithic ash-flow tuff. Fresh surfaces are purple with black fiamme 1-3 cm long. The Antimony Tuff (PH030218-1, Fig. 2) is a densely welded, relatively crystal-poor ash-flow tuff, with a red groundmass containing large plagioclase, minor pyroxene, and lithics. The Langdon Mountain Formation contains a lower lahar facies and an upper lava flow facies; only the lava flow facies, dated here, clearly postdates the SGS (Rowley et al., 2002). The lava flow facies is described as a dacitic lava flow containing large phenocrysts of plagioclase, hornblende, and minor pyroxene (Rowley et al., in press) and considered the last of the minor eruptive sequences prior to the eruption of the caldera-forming Osiris Tuff (Rowley et al., 1994); eruptive vents of the Langdon Mountain rocks were likely destroyed by emplacement of the Monroe Peak caldera. The Osiris Tuff (PH030218-2) contains dominantly large feldspar phenocrysts, conspicuous biotite, and minor pyroxene within a gray groundmass. The Osiris Tuff is not deformed by the SGS, but was deformed by the later 23 Ma MGS emplacement near the breakaway zone at Puffer Lake (Biek et al., 2019; Holliday et al., 2022). Pseudotachylyte (24MSGC-37, Fig. 2) is found on shear planes and in injection veins as much as 200 m above the basal slip surface.

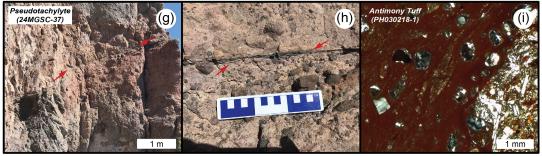


Figure 2: (a) Outcrop of Kingston Canyon Tuff; (b) Hand sample of Kingston Canyon Tuff showing abundant lithic fragments; (c) thin section of Kingston Canyon Tuff showing plagioclase and biotite phenocrysts; (d) outcrop of tuff of Tibadore; (e) tuff of Tibadore hand sample with prominent fiamme; (f) thin section of the tuff of Tibadore showing rare crystal clot; (g) outcrop of pseudotachylyte vein; (h) outcrop of pseudotachylyte vein; (i) thin section of Antimony Tuff showing mafic xenolith (right side of image) and fiamme. Thin section photographs were taken in crossed polarized light.

3.1 40 Ar/39 Ar analysis

Samples of each ash-flow tuff, lava flow, and pseudotachylyte described above were processed by standard crushing, magnetic, and density techniques to prepare for 40 Ar/ 39 Ar analysis. Sanidine was extracted from the Osiris and Antimony Tuffs, and plagioclase was analyzed from the tuff of Tibadore, Kingston Canyon Tuff, and Langdon Mountain lava flow. Pseudotachylyte glass was handpicked prior to analysis. Selected materials were co-irradiated with the 28.201 Ma Fish Canyon Tuff sanidine neutron fluence monitor (Kuiper et al., 2008) at the Cd-lined facility

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

Manuscript for submission to GChron

7

at the Oregon State University TRIGA reactor. Single crystal total fusion analyses were conducted for the ash-flow tuffs whereas incremental heating experiments were conducted for the lava flow and pseudotachylyte. All analyses were performed at the WiscAr Geochronology Lab, University of Wisconsin-Madison using either the Noblesse 5 Collector (Jicha et al., 2016) or the Isotopx NGX-600 mass spectrometers (Mixon et al., 2022).

3.2 Zircon U/Pb analysis

Zircon crystals were extracted by traditional methods of crushing and grinding, followed by separation by panning, heavy liquids, and a Frantz magnetic separator. A large split of grains is incorporated into a 1" epoxy mount together with fragments or loose grains of Sri Lanka, FC-1, and R33 zircon crystals that are used as primary standards. The mounts are sanded down to a depth of ~20 microns, polished, imaged, and cleaned prior to isotopic analysis. Grains of interest are imaged to provide a guide for locating analysis pits in optimal locations, and to aid in interpreting results. BSE and color CL Images are generated with a Hitachi 3400N SEM and a Gatan CL2 detector system. U/Pb geochronologic analyses were conducted by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) at the Arizona LaserChron Center (www.laserchron.org). Methods for U/Pb geochronology have been described by Gehrels et al. (2006, 2008), Gehrels and Pecha (2014), Pullen et al. (2018), and Sundell et al. (2021).

4 Results

4.1 40 Ar/39 Ar geochronology

Thirty-three plagioclase crystals from the Kingston Canyon Tuff (21MGSC-02) generated a range of radiogenic yields. As such, only the seven grains with >70% 40Ar* were used to calculate the weighted mean and associated statistics. The seven grains yield ages from 25.88 ± 0.06 Ma to 26.08 ± 0.08 Ma and produce a weighted mean of 25.97 ± 0.06 Ma (n = 7/33; MSWD = 1.27). All uncertainties reported in this work include errors associated with the irradiation parameter, J. Nine single crystal plagioclase fusion analyses from the tuff of Tibadore (21MGSC-01) yielded dates from 25.33 ± 0.01 Ma to 25.91 ± 0.08 Ma. However, in order to filter the data in a consistent manner, analyses with <70% 40Ar* were omitted from calculations. Thus a weighted mean for five of the analyses is 25.43 ± 0.05 Ma (MSWD = 0.74). Incremental heating of pseudotachylyte glass (24MGSC-37) produced a plateau age of 25.25 ± 0.05 Ma including >85% of the cumulative 39 Ar_K. The 40 Ar/ 36 Ar isochron intercept of 292.4 ± 8.8 is within uncertainty of the atmospheric value (Lee et al., 2006). Two locations were sampled for Antimony Tuff and sanidine from both were analyzed by total fusion. Thirteen grains from sample PH030218-1 produced dates ranging from 25.02 ± 0.07 Ma to 25.26 ± 0.07 Ma. A weighted mean of these yields an age of 25.14 ± 0.06 Ma (MSWD = 1.33). Twenty-seven sanidine grains from sample (MP071020-2) produced dates ranging from $25.14 \pm$ 0.03 Ma to 25.23 ± 0.03 Ma, and a weighted mean of these produce an age of 25.19 ± 0.02 Ma (MSWD = 1.45). Combining the two datasets and applying normalized Median Absolute Deviation (nMAD) filter of 1.5 (e.g., Kuiper et al., 2008), 35 of the 40 total grains produce a weighted mean age of 25.19 ± 0.02 Ma (MSWD = 1.17). Bulk

plagioclase from the Langdon Mountain lava flow was incrementally heated and produced a plateau age of 24.68 ± 0.32 Ma with 100% of the cumulative 39 Ar_K. The 40 Ar/ 36 Ar isochron intercept of 299.3 ± 10.3 is within uncertainty of the atmospheric value (Lee et al., 2006). Holliday et al. (2022) report total fusion dates of thirteen sanidine grains from the Osiris Tuff, which produced dates ranging from 23.16 ± 0.08 Ma to 23.37 ± 0.04 Ma and a weighted mean age of 23.27 ± 0.05 Ma (MSWD = 1.60).

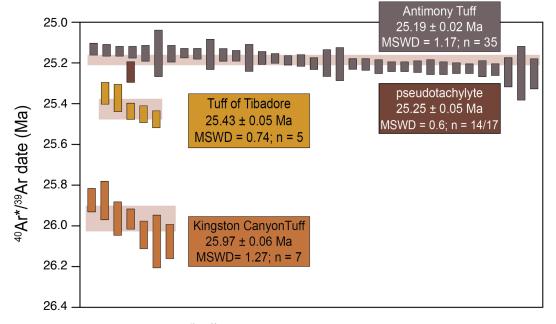


Figure 3: Results of single crystal fusion $^{40}\text{Ar}/^{39}\text{Ar}$ analyses for the volcanic units overlying and within the Sevier gravity slide, and incremental heating result of the slide-generated pseudotachylyte. Height of each bar represents the $^{40}\text{Ar}/^{39}\text{Ar}$ date and 2σ uncertainty of a single experiment. The height of the shaded region behind Kingston Canyon Tuff, tuff of Tibadore, and Antimony Tuff represents the weighted mean with 2σ uncertainty of the shown analyses. n = number of single crystal analyses used to calculate the weighted mean, except for the pseudotachylyte, in which n refers to the number of incremental heating steps used to calculate a plateau age.

4.2 Zircon U/Pb geochronology

Zircon $^{206}\text{Pb*}/^{238}\text{U}$ dates from the Kingston Canyon Tuff (sample KCT) range from 25.11 ± 0.37 Ma to 1871 ± 12 Ma (n = 122; supplementary materials). Precambrian grains (n = 5) and the single young zircon (n = 1) that is outside statistical uncertainty of the $^{40}\text{Ar}/^{39}\text{Ar}$ eruption age were excluded from calculations. The $^{206}\text{Pb*}/^{238}\text{U}$ dates produce a bimodal distribution (Fig. 4), with mixture model deconvolution peaks at 26.41 ± 0.06 Ma (29%) and 33.96 ± 0.05 Ma (54%) (Sambridge 1994; Ludwig, 2012). Zircon from the Mount Dutton Formation produced $^{206}\text{Pb*}/^{238}\text{U}$ dates ranging from 25.13 ± 0.50 Ma to 1823 ± 15 Ma (n = 156). Grains older than 50 Ma were excluded

Manuscript for submission to GChron

from calculations (n = 17). The 206 Pb*/ 238 U dates of the Mount Dutton Formation produce a fairly unimodal distribution, with a tail to slightly older (>30 Ma) dates. Mixture modeling deconvolution suggests the dominant population is 26.56 ± 0.04 Ma (78%). However, this value is skewed slightly older than the age of the peak (Fig. 4).

The maximum depositional age (MDA) was estimated using maximum likelihood age algorithms (MLA; Galbraith and Laslett, 1993; Vermeesch, 2021). The MLA age for the Kingston Canyon Tuff of 26.13 ± 0.20 Ma (Fig. 5) is in agreement with the 40 Ar/ 39 Ar eruption age, but is significantly younger than the mixture modeling deconvolution age discussed above. The MLA for the alluvium of the Mount Dutton Formation is 25.24 ± 0.17 Ma (Fig. 5), again significantly younger than the deconvolution age.

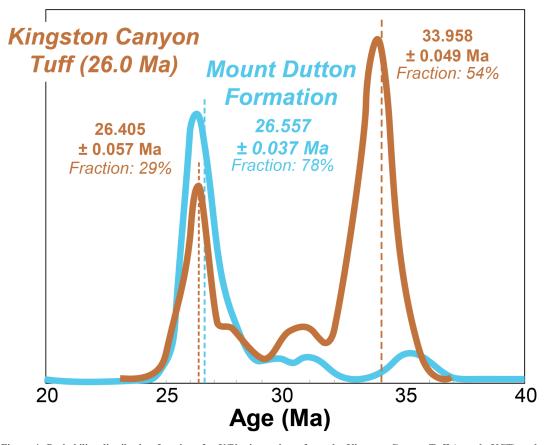


Figure 4: Probability distribution functions for U/Pb zircon dates from the Kingston Canyon Tuff (sample KCT) and overlying alluvium of the Mount Dutton Formation. Mixture modeling deconvolution ages and fraction of total grains are displayed for each mode. The dashed lines mark those deconvolution ages relative to the probability distribution functions.

Manuscript for submission to GChron

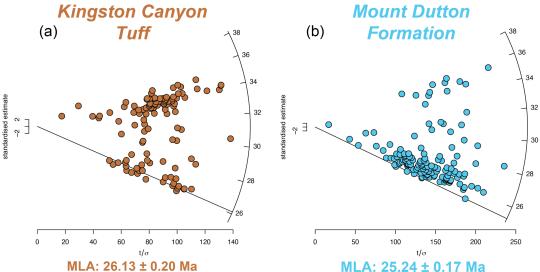


Figure 5: Radial plots of zircon U/Pb data for the (a) Kingston Canyon Tuff and (b) overlying alluvium of the Mount Dutton Formation. MLA: Maximum Likelihood Age. Plots generated using IsoPlotR with the algorithms of Galbraith and Laslett (1993) and Vermeesch (2021) and a logarithmic transformation.

5 Discussion

Emplacement of the SGS was previously constrained to between 23.0 and 25.4 Ma based on a K-Ar age 25.4 ± 0.9 Ma for the tuff of Tibadore, which is the youngest deformed volcanic unit in the SGS, and the 23.0 Ma age of the overlying, undeformed Osiris Tuff (Biek et al., 2019). This age was updated to between 26.2 and 25.1 Ma based on an age of 25.1 Ma for the Antimony Tuff, which post-dates emplacement, and an age of 26.2 Ma for the Buckskin Breccia, the youngest rocks underlying the SGS (Rowley et al., 1994; in press). The breccia itself had not been dated, but included clasts of the Spry and Showalter quartz monzonite intrusions which have similar intrusion dates (Biek et al., 2022). Loffer (2024) estimated an emplacement age of 25.5 Ma based on detrital zircon U/Pb dates from the basal layer of the SGS at two locations. The discovery of pseudotachylyte within the SGS offered an additional opportunity to refine the emplacement age; this work presents an 40 Ar/ 39 Ar age of 25.25 \pm 0.05 Ma for SGS emplacement, consistent with previous estimates but with higher precision. The significant improvement in the plateau age uncertainty for the SGS experiment relative to the pseudotachylyte analysis of Holliday et al. (2022) is because the analyses were performed using the NGX-600 mass spectrometer, which has stable ATONA®-backed Faraday collectors (Mixon et al. 2022) and an incredibly low noise floor (Cox et al., 2020). As such a Bayesian statistical optimization age is not needed. Emplacement occurred approximately 170 kyr after the eruption of the tuff of Tibadore and immediately preceding the eruption of the Antimony Tuff. The slide may have occurred up to 130

Manuscript for submission to GChron

kyr prior to the eruption of the Antimony Tuff, or may have occurred near simultaneously, given that the ages and uncertainties for the pseudotachylyte and Antimony Tuff are statistically indistinguishable. Importantly, because the pseudotachylyte had been found within the upper plate associated with subsidiary faults, it has been impossible, until now, to conclusively demonstrate it was formed during slide emplacement. The pseudotachylyte age reported here thus provides tight constraints on the timing of SGS emplacement, and confirms the catastrophic nature of emplacement, consistent with prior interpretations (e.g., Biek et al., 2019; Braunagel et al., 2023).

The bimodal zircon U/Pb distribution of the Kingston Canyon Tuff suggests a significant zircon contribution from a previously crystallized subsurface magma. Xenocrystic inheritance is not observed in the ⁴⁰Ar/³⁹Ar data, possibly due to the small number of grains analyzed. Interestingly, the U/Pb zircon record of the alluvium atop the Kingston Canyon Tuff does not contain a strong 34 Ma signal. This, along with the overall younger MLA of the Mount Dutton alluvium, suggests that the dominant sediment input was derived from a different source. The MLA of the alluvium at the basal layer of the slide is also identical to that of the pseudotachylyte, suggesting that the former land surface was 25.25 Ma when the pseudotachylyte formed.

The Eocene Heart Mountain gravity slide in Wyoming is a comparable feature that is associated with igneous activity of the Absaroka volcanic field. Initiation of the gravity slide has been debated, ranging from incremental movement spanning millions of years (Malone et al. 2014), or catastrophic emplacement spanning several minutes to hours (Craddock et al. 2009). Recently, a lamprophyre suite (breccia, dike, diatreme) was identified at the base of allochthonous rocks. High-precision zircon U/Pb dating of the lamprophyre yielded dates that were identical to those obtained from other basalt cataclasites, leading to the interpretation that the eruption of the diatreme triggered the gravity slide (Malone et al., 2017).

In both the MGSC and Heart Mountain, trigger mechanisms for gravity slides have been poorly understood; however, timing of igneous events relative to the sliding are essential for unraveling the relationship between the two types of events. In the Eocene Heart Mountain gravity slide, igneous activity apparently led to sliding, whereas in the Oligocene SGS, decompression associated with the gravity slide may have initiated the eruption of the Antimony Tuff. However, the timing of the intrusion of the magma body which became the Antimony Tuff is still unknown. Additional insights into the processes associated with Antimony Tuff's preeruption magma injection into the upper crust could be unraveled using detailed mineral analyses.

6 Conclusion

New high-precision 40 Ar/ 39 Ar dating of key units involved in the SGS suggest an emplacement age of 25.25 Ma \pm 0.05 Ma. This is approximately two million years prior to the Markagunt gravity slide (Holliday et al., 2022). The emplacement model proposed here is that the slide was initiated from injection of magma, which led to slope failure. This prompted decompression and ultimately the eruption of the 25.19 \pm 0.02 Ma Antimony Tuff. The association of magmatic intrusions and gravity slides was also proposed at Heart Mountain, Wyoming, suggesting that large-volume volcanic plateaus may generate these types of catastrophic events more frequently than previously

12 270 identified. Further, we begin to resolve the questions about causes for gravity slides (Hacker., 2014) and assess the 271 relationship between igneous activity and mass movements. 272 273 Data availability. All data used in this work are provided in the supplementary materials. 274 275 Supplementary materials. The supplement is available online. 276 277 Author contributions. TR and MH designed the study and performed field collection with BJ, DHM, MJB, RFB, 278 and WAG. BJ and BHM performed 40Ar/39Ar and U/Pb data collection, respectively. TR, MH, and VABF 279 performed data analysis. TR prepared the figures and the manuscript, and all authors contributed to the interpretation 280 of results and improvement of the manuscript. 281 282 Competing interests. The authors declare no competing interests. 283 284 Acknowledgements. We thank the Arizona LaserChron Lab for assistance in analyzing samples for U/Pb data. 285 Samples for this work were obtained from the homelands of the Ute, Southern Paiute and Goshute people. 286 287 Financial Support. Funding for this research was provided by the National Science Foundation (EAR-2412838; 288 EAR-2113158, EAR-2113157, EAR-2113155, EAR-2050246). 289 290 291 292 References 293 Anderson, J.J., 1993. The Markagunt megabreccia: large Miocene gravity slides mantling the northern Markagunt 294 Plateau, southwestern Utah. Utah Geological Survey, Miscellaneous Publication 93-2. https://doi.org/10.34191/mp-295 93-2 296 Biek, R.F, Hacker, D.B., Rowley, P.D., 2014. New constraints on the extent, age, and emplacement history of the 297 early Miocene Markagunt Megabreccia, southwest Utah—the deposit of one of the world's largest subaerial gravity 298 slides, Geology of Utah's far south 43, 565-598. 299 Biek, R.F., Hacker, D.B., Rowley, P.D., 2017. Catastrophic mega-scale landslide failure of large volcanic fields. 300 Thompson Field Forum. https://doi.org/10.1130/abs/2018rm-314106 301 302 Biek, R.F., Rowley, P.D., Anderson, J.J., Maldonado, F., Moore, D.W., Hacker, D.B., Eaton, J.G., Hereford, R., 303 Sable, E.G., Filkorn, H.F., Matyjasik, B., 2015. Geologic map of the Panguitch 30' x 60' quadrangle, Garfield, Iron, 304 and Kane counties, Utah.

	Manuscript for submission to GCnron
306	Biek, R.F., Rowley, P.D., Hacker, D.B., 2022. Utah's ancient mega-landslides—geology, discovery, and guide to
307 308	Earth's largest terrestrial landslides. Utah Geological Survey Circular 132. https://doi.org/10.34191/c-132
309	Biek, R.F., Rowley, P.D., Hacker, D.B., 2019. The Gigantic Markagunt and Sevier Gravity Slides Resulting from
310	Mid-Cenozoic Catastrophic Mega-Scale Failure of the Marysvale Volcanic Field, Utah, USA. Thompson Field
311	Forums.
312	
313	Braunagel, M.J., Griffith, W.A., Biek, R.F., Hacker, D.B., Rowley, P.D., Malone, D.H., Mayback, D., Rivera, T.A.,
314	Loffer, Z., Smith, Z.D., 2023. Structural Relationships Across the Sevier Gravity Slide of Southwest Utah and
315	Implications for Catastrophic Translation and Emplacement Processes of Long Runout Landslides. Geochemistry
316	Geophysics Geosystems 24. https://doi.org/10.1029/2022gc010783
317	
318	Braunagel, M., Malone, D., Hacker, D., Biek, R., Rivera, T., Loffer, Z., Holliday, M., and Griffith, W. A. (in
319	review) Zircon geochronology records frictional wear during emplacement of the Sevier gravity slide, southwest
320	Utah (USA), submitted to Geology.
321	
322	Cox, S.E., Hemming, S.R., Tootell, D., 2020. The Isotopx NGX and ATONA Faraday amplifiers: Geochronology 2,
323	231–243, https://doi.org/10.5194/gchron-2-231-2020.
324	
325	Craddock, J.P., Malone, D.H., Magloughlin, J., Cook, A.L., Rieser, M.E. Doyle, J.R., 2009. Dynamics of the
326	emplacement of the Heart Mountain allochthon at White Mountain: Constraints from calcite twinning strains,
327	anisotropy of magnetic susceptibility, and thermodynamic calculations. Geological Society of America Bulletin 121,
328	919-938.
329 330	Compingham C.C. Stavan T.A. 1070 Mayort Ballyan and Bad Hills caldenge and accompany of marrayala
331	Cunningham, C.G., Steven, T.A., 1979. Mount Belknap and Red Hills calderas and associated rocks, Marysvale
332	volcanic field, west-central Utah, USGS Numbered Series 1468.
333	Gehrels, G.E., Pecha, M., 2014. Detrital zircon U-Pb geochronology and Hf isotope geochemistry of Paleozoic and
334	Triassic passive margin strata of western North America. Geosphere 10, 49–65, DOI:10.1130/geos.s.12187251.v1.
335	Thassic passive margin strata of western rootal America. Geosphere 10, 47 03, Doi:10.1130/geos.s.1210/251.v1.
336	Gehrels, G.E., Valencia, V., Pullen, A., 2006. Detrital zircon geochronology by laser-ablation multicollector ICPMS
337	at the Arizona LaserChron Center. The Paleontological Society Papers 12, 67–76,
338	DOI:10.1017/s1089332600001352.
339	
340	Cabrala G.E. Valancia V. Duiz I. 2009 Enhanced macinian accuracy officianay and quotial acculation of U.D.
341	Gehrels, G.E., Valencia, V., Ruiz, J., 2008. Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry. Geochemistry Geophysics
342	Geosystems 9, DOI:10.1029/2007gc001805.
J72	Georgianis 7, DOI:10:1027/2007geo01003.

343	
344	Granger, H.C., Bauer, H.L., 1950. Preliminary examination of uranium deposits near Marysvale, Piute County, Utah
345	(No. 33). US Geological Survey.
346	
347	Hacker, D., Biek, R.F., Rowley, P., Griffith, W.A., Malone, D., Rivera, T., 2023. Catastrophic gravity sliding of the
348	Marysvale volcanic field during rapid growth of laccolithic batholiths: insights from the Cenozoic Marysvale gravity
349	slide complex, southwest Utah. https://doi.org/10.1130/abs/2023am-394566
350	
351	Hacker, D.B., Biek, R.F., Rowley, P.D., 2014. Catastrophic emplacement of the gigantic Markagunt gravity slide,
352	southwest Utah (USA): Implications for hazards associated with sector collapse of volcanic fields. Geology 42, 943-
353	946. https://doi.org/10.1130/g35896.1
354	
355	Hacker, D.B., Rowley, P.D., Biek, R.F., 2018. Catastrophic collapse features in volcanic terrains: styles and links to
356	subvolcanic magma systems. In: Advances in Volcanology. Springer. https://doi.org/10.1007/11157_2017_1001
357	
358	Holliday, M.E., Rivera, T., Jicha, B., Trayler, R.B., Biek, R.F., Braunagel, M.J., Griffith, W.A., Hacker, D.B.,
359	Malone, D.H., Mayback, D.F., 2022. Emplacement age of the Markagunt gravity slide in southwestern Utah, USA.
360	Terra Nova. https://doi.org/10.1111/ter.12630
361	
362	Jicha, B.R., Singer, B.S., Sobol, P., 2016. Re-evaluation of the ages of 40Ar/39Ar sanidine standards and
363	supereruptions in the western U.S. using a Noblesse multi-collector mass spectrometer. Chemical Geology 431, 54-
364	66. https://doi.org/10.1016/j.chemgeo.2016.03.024
365	
366	Kerr, P.F., Brophy, G.P., Dahl, H.M., Green, J., Woolard, L.E., 1957. Marysvale, Utah, Uranium Area: Geology,
367	Volcanic Relations, and Hydrothermal Alteration, Marysvale, Utah, Uranium Area: Geology, Volcanic Relations,
368	and Hydrothermal Alteration (Paul F. Kerr, Gerald P. Brophy, Harry M. Dahl, Jack Green, and Louis E. Woolard,
369	eds.), Geological Society of America 64.
370	
371	Kuiper, K.F., Deino, A., Hilgen, F.J., Krijgsman, W., Renne, P.R., Wijbrans, J.R., 2008. Synchronizing Rock Clocks
372	of Earth History. Science 320, 500-504. https://doi.org/10.1126/science.1154339
373	
374	Lee, JY., Marti, K., Severinghaus, J.P., Kawamura, K., Yoo, HS., Lee, J.B., Kim, J.S., 2006. A redetermination
375	of the isotopic abundances of atmospheric Ar. Geochimica et Cosmochimica Acta 70, 4507-4512.
376	https://doi.org/10.1016/j.gca.2006.06.1563
377	

Manuscript for submission to GChron

15

378 Loffer, Z.J., Hacker, D.B., Malone, D.H., Biek, R.F., d Rowley, P. D., 2020, Zircon geochronology of the basal 379 layer of the Sevier gravity slide, Marysvale volcanic field, Utah, USA. Geological Society of America Abstracts 380 with Programs 52, doi: 10.1130/abs/2020RM-346702. 381 382 Ludwig, K. R., 2012. User's manual for Isoplot version 3.75-4.15: a geochronological toolkit for Microsoft Excel. 383 Berkeley Geochronological Center Special Publication 5. 384 385 Malone, D.H., 1995. Very large debris-avalanche deposit within the Eocene volcanic succession of the northeastern 386 Absaroka Range, Wyoming. Geology 23, 661-664. https://doi.org/10.1130/0091-387 7613(1995)023<0661:vldadw>2.3.co;2 388 389 Malone, D.H., Craddock, J.P., Anders, M.H., Wulff, A.P., 2014. Constraints on the emplacement age of the massive 390 Heart Mountain Slide, Northwestern Wyoming. Journal of Geology 122, 671-685. DOI:10.1086/678279 391 392 Malone, D.H., Craddock, J.P., Schmitz, M.D., Kenderes, S., Kraushaar, B., Murphey, C.J., Nielsen, S., Mitchell, 393 T.M., 2017. Volcanic Initiation of the Eocene Heart Mountain Slide, Wyoming, USA. Journal of Geology 125, 439-394 457. https://doi.org/10.1086/692328 395 396 Marchetti, D.W., Stork, A.L., Solomon, D.K., Cerling, T.E., Mace, W., 2020. Cosmogenic 3He exposure ages of 397 basaltic flows from Miller Knoll, Panguitch Lake, Utah: Using the alternative isochron approach to overcome low-398 gas crushes. Quaternary Geochronology 55, 101035. https://doi.org/10.1016/j.quageo.2019.101035 399 400 Mixon, E. E., Jicha, B. R., Tootell, D., Singer, B.S., 2022. Optimizing 40Ar/39Ar analyses using an Isotopx NGX-600 401 mass spectrometer. Chemical Geology 593, 120753. https://doi.org/10.1016/j.chemgeo.2022.120753 402 403 Palmer, B.A., Walton, A.W., 1990. Accumulation of volcaniclastic aprons in the Mount Dutton Formation 404 (Oligocene-Miocene), Marysvale volcanic field, Utah, Geological Society of America Bulletin 102, 6, 734-748. 405 406 Pullen, A., Ibanez-Mejia, M., Gehrels, G., Giesler, D., Pecha, M., 2018. Optimization of a laser ablation-single 407 collector-inductively coupled plasma-mass spectrometer (Thermo Element 2) for accurate, precise, and efficient 408 zircon U-Th-Pb geochronology. Geochemistry, Geophysics, Geosystems 19, 3689-3705. 409 DOI:10.1029/2018GC007889. 410 411 Rowley, P.D., Anderson, J.J., WIlliams, P., 1975. A Summary of Tertiary Volcanic Stratigraphy of the Southwestern 412 High Plateaus and Adjacent Great Basin, Utah. 413 Rowley, P.D., Biek, R.F., Hacker, D.B., Vice, G.S., McDonald, R.E., Maxwell, D.J., Fasselin, R., Dustin, J.,

Cunningham, C.G., Steven, T.A., Anderson, J.J., Ekren, B.E., Machete, M.N., Wardlaw, B.R., Smith, Z.D., Kirby,

Technical Information Service.

448

16

415 S.M., Knudsen, T.R., Kleber, E.J., Hiscock, A.I., Malone, D.H., Rivera, T.A., Jicha, B.R., *Interim geologic map* 416 of the Beaver 30' x 60' quadrangle, Beaver, Piute, Iron, and Garfield Counties, Utah, (in press.). 417 Rowley, P.D., Cunningham, C.G., Steven, T.A., Mehnert, H.H., Naeser, C.W., 1997. Cenozoic Igneous and 418 Tectonic Setting of the Marysvale Volcanic Field and Its Relation to Other Igneous Centers in Utah and Nevada, in: 419 Friedman, J.D., Huffman, C. (Eds.), Laccolith Complexes of Southeastern Utah: Time of Emplacement and Tectonic 420 Setting-Workshop Proceedings, Laccolith Complexes of Southeastern Utah. U.S. Geological Survey Bulletin 2158, 421 pp. 167–201. 422 423 Rowley, P.D., Cunningham, C.G., Steven, T.A., Workman, J.B., Anderson, J.J., Theissen, K.M., 2002. Geologic 424 Map of the Central Marysvale Volcanic Field, Southwestern Utah. Geological Investigations Series I-2645-A. 425 426 Rowley, P.D., Mehnert, H.H., Naeser, C.W., Snee, L.W., Cunningham, C.G., Steven, T.A., Anderson, J.J., Sable, 427 E.G., Anderson, R.E., 1994. Isotopic ages and stratigraphy of Cenozoic rocks of the Marysvale Volcanic Field and 428 adjacent areas, west-central Utah. U.S. Geological Survey Bulletin 2071. 429 430 Sable, E.G., Maldonado, F., 1997. Breccias and megabreccias, Markagunt Plateau, southwestern Utah: Origin, age, 431 and transport directions, United States Geological Survey Bulletin 2153, 151-176. 432 433 Sambridge, M.S., Compston, W., 1994. Mixture modeling of multi-component data sets with application to ion-434 probe zircon ages. Earth and Planetary Science Letters 128, 373-390, doi:10.1016/0012-821x(94)90157-0. 435 436 Steven, T.A., Cunningham, C.G., Naeser, C.W., Mehner, H., 1977. Revised stratigraphy and radiometric ages of 437 volcanic rocks and mineral deposits in the Marysvale area, west-central Utah, USGS Open File Report 77-569. 438 439 Steven, T.A., Rowley, P.D., Cunningham, C.G., 1984. Calderas of the Marysvale Volcanic Field, west central Utah, 440 Journal of Geophysical Research 89, no. B10, 8751. 441 442 Sundell, K.E., Gehrels, G.E., Pecha, M.E., 2021. Rapid U-Pb geochronology by laser ablation multi-collector. 443 Geostandards and Geoanalytical Research 45, 37-57. DOI:10.1111/ggr.12355. 444 445 Taylor, A.O., Anderson, T.P, O'Toole, W.L., Waddell, G.G., Gray, A.W., Douglas, H., Cherry, C.L., Caywood, 446 R.M., 1951. Geology and Uranium Deposits of Marysvale, Utah, Interim Report on the Producing Area 896, 447

https://doi.org/10.5194/egusphere-2024-2899 Preprint. Discussion started: 25 September 2024 © Author(s) 2024. CC BY 4.0 License.

457

Manuscript for submission to GChron

449	Wender, L.E., Nash, W.P., 1979. Petrology of Oligocene and early Miocene calc-alkalic volcanism in the Marysvale
450	area, Utah: Summary. Geological Society of America Bulletin 90, 2-3. https://doi.org/10.1130/0016-
451	7606(1979)90<2:pooaem>2.0.co;2
452	
453	Zamanialavijeh, N., Hosseinzadehsabeti, E., Ferré, E.C., Hacker, D.B., Biedermann, A.R., Biek, R.F., 2021.
454	Kinematics of frictional melts at the base of the world's largest terrestrial landslide: Markagunt gravity slide,
455	southwest Utah, United States. Journal of Structural Geology 153, 104448.
456	https://doi.org/10.1016/j.jsg.2021.104448