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Abstract. The Marysvale volcanic field in southwestern Utah hosts three large volume gravity slides: the Sevier 25 
(SGS), the Markagunt (MGS), and the Black Mountains (BGS). The gravity slides are composed of lahar deposits, 26 
lava flows, and ash-flow tuffs erupted from former stratovolcanoes and other vents during the Oligocene and Miocene. 27 
The ash-flow tuffs are prime targets for dating to constrain the age of the gravity slides because some ash-flow tuffs 28 
are deformed within the slides, whereas others are undeformed and cap the slides. Furthermore, the gravity slides 29 
produced pseudotachylyte during slide motion, a direct indicator for the timing of each slide. This work provides new 30 
40Ar/39Ar dates for several ash-flow tuffs and pseudotachylyte for the SGS, along with U/Pb zircon dates for one 31 
deformed tuff and overlying alluvium at the slide plane. Results show that the slide was emplaced at 25.25 ± 0.05 Ma 32 
and was immediately followed by the eruption of the Antimony Tuff at 25.19 ± 0.02 Ma. The model presented here 33 
suggests that the intrusion of magma related to the Antimony Tuff acted as a triggering mechanism for the slide, and 34 
that slide movement itself led to decompression melting and eruption of the Antimony Tuff. This sequence of events 35 
occurred on a geologically rapid timescale and may have been virtually instantaneous.  36 
 37 
Short summary. The timing of an ancient gravity slide that originated in the Marysvale volcanic field (Utah) is 38 
constrained using 40Ar/39Ar dating of pseudotachylyte, a friction-induced glass that is generated during slide 39 
movement, and the volcanic tuffs that were displaced by the slide and those that overly the slide mass. Our results 40 
suggest that the Sevier gravity slide occurred at 25.25 Ma. The removal of such a large volume of material likely 41 
allowed for the eruption of the Antimony Tuff at 25.19 Ma.  42 

1 Introduction 43 

Gravity slides are large volume mass movements that typically slide over 44 

shallowly dipping (≤ 3˚) paleosurfaces. The Heart Mountain slide (Wyoming) and the 45 

recently described Markagunt Gravity Slide (Utah) were coeval with volcanism and 46 
displaced km-thick sheets of volcanic rocks (Biek et al., 2022; Malone, 1995; Malone et al., 2017). A characteristic 47 
feature of gravity slides is that they maintain the original stratigraphy within the allochthonous sheets. The presence 48 
of volcanic materials offers opportunities to constrain the emplacement age using several geochronological 49 
techniques. Furthermore, these megaslides are emplaced so rapidly that they can generate pseudotachylyte, a friction 50 
induced melt hypothesized to have formed from the rocks involved in sliding. Geochronology of the 51 
pseudotachylyte can directly constrain the age of the slide.  52 

The Oligocene-Miocene Marysvale gravity slide complex (MGSC) in southwestern Utah is unique in that it 53 
contains multiple, gigantic individual gravity slides, including the Sevier gravity slide (SGS), the 23 Ma Markagunt 54 
gravity slide (MGS; (Holliday et al., 2022)), and the Black Mountain gravity slide (BGS) (Biek et al., 2019, 2022). 55 
Despite the coeval nature of the MGSC and the Marysvale Volcanic Field (MVF), the causality of gravity slide 56 
emplacement is still unclear. Slide initiation may be due to magmatic doming within the gravity slide’s breakaway 57 
region, laccolith emplacement, or the accumulation of volcanic material on weak strata may overload the crust and 58 
stimulate widespread slope failure (Hacker et al., 2018). Recent work has improved the understanding about source 59 
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material and kinematics of these landslides (Braunagel et al., 2023; Hacker et al., 2023; Holliday et al., 2022; 60 
Zamanialavijeh et al., 2021). Notably, Holliday et al. (2022) obtained 40Ar*/39Ar dates on the ash-flow tuffs and 61 
pseudotachylyte from the MGS, then employed a novel Bayesian statistical optimization age model to constrain an 62 
emplacement age. This work builds upon the previous geochronology study of the MGS to determine the 63 
emplacement age of the SGS through 40Ar*/39Ar dating of pseudotachylyte formed during slide movement and of 64 
the bounding ash-flow tuffs. Our results unambiguously tie pseudotachylyte formation to slide emplacement, 65 
affirming the catastrophic nature of the slides, while simultaneously constraining the timing of slope failure relative 66 
to volcanic eruptions, which resolves outstanding questions surrounding causality of gravity slides.  67 

2 Geologic background 68 

Early investigations in the MVF have provided the foundation for the discovery of the MGSC and 69 
unraveling the associated stratigraphy as described in Biek et al. (2019). Geochemical investigations of the volcanic 70 
units led to the identification of the calc-alkaline nature of the older rocks and bimodal basalt and high-silica rhyolite 71 
younger rocks (Rowley et al., 1975; Steven et al., 1977; Wender and Nash, 1979), and extensive mapping initiatives 72 
were undertaken to unravel the geology, mineral resources, and economic potential of the region (e.g., Steven et al., 73 
1977; Cunningham and Steven, 1979; Steven et al., 1984; Palmer and Walton, 1990; Rowley et al., 1994; Rowley et 74 
al., 1998; Granger and Bauer, 1950; Taylor et al., 1951; Kerr et al., 1957; among many others). This foundational 75 
body of work contributes to understanding the spatial distribution of the volcanic centers and the stratigraphic 76 
relationships between major eruptive units. The MVF straddles the boundary between the Colorado Plateau and the 77 
Basin and Range province and covers >10,000 km2, with an estimated total volume of 12,000 km3 (Rowley et al., 78 
1998), and hosts three calderas: Three Creeks (~27 Ma), Monroe Peak (23–22 Ma), and Mount Belknap (22–18 79 
Ma). However, most of the eruptive products in the MVF have an unknown source, presumably because many vent 80 
areas are now buried or overprinted by younger calderas. The breakaway regions for each gravity slide are inferred 81 
to be entirely within the MVF, and suggest a genetic connection to local volcanic activity. The breakaway zones of 82 
the SGS and MGS are overprinted by younger calderas (Rowley et al., in press; Biek et al., 2019, 2022), and the 83 
breakaway of the BGS has presumably been eroded over the Mineral Mountains batholith. 84 

Initiation of MVF volcanism is associated with Farallon slab rollback and southward migration of 85 
volcanism across western North America. Peak volcanic (23–32 Ma) activity consisted of intermediate calc-alkaline 86 
eruptions (Rowley et al., 1998; 2002; in press) which account for ~90% of the MVF volcanic material contained in 87 
the Bullion Canyon Volcanics and the Mount Dutton Formation (Rowley et al., 1994). The transition to bimodal 88 
basalt and high-silica rhyolite volcanism occurred ca. 22 Ma and is linked to the transition from a subduction-style 89 
regime to Basin and Range extension (Rowley et al., 1997). Basaltic eruptions have continued into the late 90 
Pleistocene (Biek et al., 2015; Marchetti et al., 2020).  91 

Recognition of the MGSC began with the early characterization of the Markagunt Megabreccia on the 92 
Markagunt Plateau (Anderson, 1993). Described as isolated allochthonous masses (megabreccia), the Markagunt 93 
Megabreccia consists of monolithic blocks and heterolithologic complexes as large as 2.5 km2 and 50–200 m thick 94 
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(Sable and Maldonado, 1997). While these large masses were identified as gravity slides, they were interpreted to be 95 
emplaced in several separate events from multiple sources (Anderson, 1993; Sable and Maldonado, 1997). However, 96 
Hacker et al. (2014) and Biek et al. (2014; 2015) reinterpreted the Markagunt Megabreccia as part of a 97 
catastrophically emplaced single slide mass based on new field evidence and mapping, and termed this the 98 
Markagunt gravity slide (MGS). The Sevier gravity slide (SGS) was proposed in 2017 (Biek et al., 2017), and 99 
formally recognized in Biek et al. (2019). Along the western flank of the SGS, Braunagel et al. (2023) characterized 100 
notable structural features that indicate intense deformation, clastic dikes of basal material into overlying rocks, 101 
pseudotachylyte, and cataclastic basal zones. Loffer (2024) identified several pseudotachylyte sites within the SGS, 102 
and proposed an SGS maximum depositional age of 25.5 Ma using detrital zircon extracted from the basal layer of 103 
the slide in two locations. 104 

 105 

 106 
Figure 1: Sevier gravity slide location (white boundary) shown with Monroe Peak Caldera (MPC) and sampling locations. 107 
To the right, a simplified stratigraphic section (not to scale) of the Mount Dutton Formation (light brown) with interspersed 108 
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ash-flow tuffs and other rocks investigated in this study. The allochthonous block of the SGS includes the within slide 109 
deformed ash-flow tuffs and pseudotachylyte, whereas the overlying undeformed ash-flow tuffs post-date slide 110 
emplacement. Locations labeled with “ZR” indicate samples collected for zircon U/Pb dating. © Google Earth, using 2024 111 
imagery of Airbus, Landsat, Conpernicus. 112 

3 Materials and methods 113 

The units investigated here are grouped by their stratigraphic position relative to the SGS. Ash-flow tuffs 114 
‘within’ the slide material are deformed and were displaced by slide motion as an allochthonous block. Ash-flow 115 
tuffs ‘above’ the slide are all undeformed by and postdate the SGS (Fig. 1). The Kingston Canyon Tuff (samples 116 
21MGSC-02 and KCT; Fig. 2) is a densely welded, red-purple, lithic tuff. Plagioclase is the major mineral phase, 117 
with minor hornblende and biotite. Lithic components consist of mafic igneous rocks. A sample of the alluvial facies 118 
of the Mt. Dutton Formation overlying the KCT sample was collected to examine the detrital zircon record (MVC6-119 
21-10-16-2; Braunagel et al., in review). The tuff of Tibadore (21MGSC-01, Fig. 2) is a crystal poor, densely 120 
welded lithic ash-flow tuff. Fresh surfaces are purple with black fiamme 1–3 cm long. The Antimony Tuff 121 
(PH030218-1, Fig. 2) is a densely welded, relatively crystal-poor ash-flow tuff, with a red groundmass containing 122 
large plagioclase, minor pyroxene, and lithics. The Langdon Mountain Formation contains a lower lahar facies and 123 
an upper lava flow facies; only the lava flow facies, dated here, clearly postdates the SGS (Rowley et al., 2002). The 124 
lava flow facies is described as a dacitic lava flow containing large phenocrysts of plagioclase, hornblende, and 125 
minor pyroxene (Rowley et al., in press) and considered the last of the minor eruptive sequences prior to the 126 
eruption of the caldera-forming Osiris Tuff (Rowley et al., 1994); eruptive vents of the Langdon Mountain rocks 127 
were likely destroyed by emplacement of the Monroe Peak caldera. The Osiris Tuff (PH030218-2) contains 128 
dominantly large feldspar phenocrysts, conspicuous biotite, and minor pyroxene within a gray groundmass. The 129 
Osiris Tuff is not deformed by the SGS, but was deformed by the later 23 Ma MGS emplacement near the 130 
breakaway zone at Puffer Lake (Biek et al., 2019; Holliday et al., 2022). Pseudotachylyte (24MSGC-37, Fig. 2) is 131 
found on shear planes and in injection veins as much as 200 m above the basal slip surface.  132 
 133 
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 134 
Figure 2: (a) Outcrop of Kingston Canyon Tuff; (b) Hand sample of Kingston Canyon Tuff showing abundant lithic 135 
fragments; (c) thin section of Kingston Canyon Tuff showing plagioclase and biotite phenocrysts; (d) outcrop of tuff of 136 
Tibadore; (e) tuff of Tibadore hand sample with prominent fiamme; (f) thin section of the tuff of Tibadore showing rare 137 
crystal clot; (g) outcrop of pseudotachylyte vein; (h) outcrop of pseudotachylyte vein; (i) thin section of Antimony Tuff 138 
showing mafic xenolith (right side of image) and fiamme. Thin section photographs were taken in crossed polarized light.   139 

 140 

3.1 40Ar/39Ar analysis 141 

Samples of each ash-flow tuff, lava flow, and pseudotachylyte described above were processed by standard 142 
crushing, magnetic, and density techniques to prepare for 40Ar/39Ar analysis. Sanidine was extracted from the Osiris 143 
and Antimony Tuffs, and plagioclase was analyzed from the tuff of Tibadore, Kingston Canyon Tuff, and Langdon 144 
Mountain lava flow. Pseudotachylyte glass was handpicked prior to analysis. Selected materials were co-irradiated 145 
with the 28.201 Ma Fish Canyon Tuff sanidine neutron fluence monitor (Kuiper et al., 2008) at the Cd-lined facility 146 
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at the Oregon State University TRIGA reactor. Single crystal total fusion analyses were conducted for the ash-flow 147 
tuffs whereas incremental heating experiments were conducted for the lava flow and pseudotachylyte. All analyses 148 
were performed at the WiscAr Geochronology Lab, University of Wisconsin-Madison using either the Noblesse 5 149 
Collector (Jicha et al., 2016) or the Isotopx NGX-600 mass spectrometers (Mixon et al., 2022). 150 

3.2 Zircon U/Pb analysis 151 

Zircon crystals were extracted by traditional methods of crushing and grinding, followed by separation by 152 
panning, heavy liquids, and a Frantz magnetic separator. A large split of grains is incorporated into a 1” epoxy 153 
mount together with fragments or loose grains of Sri Lanka, FC-1, and R33 zircon crystals that are used as primary 154 
standards. The mounts are sanded down to a depth of ~20 microns, polished, imaged, and cleaned prior to isotopic 155 
analysis. Grains of interest are imaged to provide a guide for locating analysis pits in optimal locations, and to aid in 156 
interpreting results. BSE and color CL Images are generated with a Hitachi 3400N SEM and a Gatan CL2 detector 157 
system. U/Pb geochronologic analyses were conducted by laser ablation inductively coupled plasma mass 158 
spectrometry (LA-ICPMS) at the Arizona LaserChron Center (www.laserchron.org). Methods for U/Pb 159 
geochronology have been described by Gehrels et al. (2006, 2008), Gehrels and Pecha (2014), Pullen et al. (2018), 160 
and Sundell et al. (2021). 161 

4 Results 162 

4.1 40Ar/39Ar geochronology 163 

Thirty-three plagioclase crystals from the Kingston Canyon Tuff (21MGSC-02) generated a range of 164 
radiogenic yields. As such, only the seven grains with >70% 40Ar* were used to calculate the weighted mean and 165 
associated statistics. The seven grains yield ages from 25.88 ± 0.06 Ma to 26.08 ± 0.08 Ma and produce a weighted 166 
mean of 25.97 ± 0.06 Ma (n = 7/33; MSWD = 1.27). All uncertainties reported in this work include errors associated 167 
with the irradiation parameter, J. Nine single crystal plagioclase fusion analyses from the tuff of Tibadore 168 
(21MGSC-01) yielded dates from 25.33 ± 0.01 Ma to 25.91± 0.08 Ma. However, in order to filter the data in a 169 
consistent manner, analyses with <70% 40Ar* were omitted from calculations. Thus a weighted mean for five of the 170 
analyses is 25.43 ± 0.05 Ma (MSWD = 0.74). Incremental heating of pseudotachylyte glass (24MGSC-37) produced 171 
a plateau age of 25.25 ± 0.05 Ma including >85% of the cumulative 39ArK. The 40Ar/36Ar isochron intercept of 292.4 172 
± 8.8 is within uncertainty of the atmospheric value (Lee et al., 2006). Two locations were sampled for Antimony 173 
Tuff and sanidine from both were analyzed by total fusion. Thirteen grains from sample PH030218-1 produced dates 174 
ranging from 25.02 ± 0.07 Ma to 25.26 ± 0.07 Ma. A weighted mean of these yields an age of 25.14 ± 0.06 Ma 175 
(MSWD = 1.33). Twenty-seven sanidine grains from sample (MP071020-2) produced dates ranging from 25.14 ± 176 
0.03 Ma to 25.23 ± 0.03 Ma, and a weighted mean of these produce an age of 25.19 ± 0.02 Ma (MSWD = 1.45). 177 
Combining the two datasets and applying normalized Median Absolute Deviation (nMAD) filter of 1.5 (e.g., Kuiper 178 
et al., 2008), 35 of the 40 total grains produce a weighted mean age of 25.19 ± 0.02 Ma (MSWD = 1.17). Bulk 179 
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plagioclase from the Langdon Mountain lava flow was incrementally heated and produced a plateau age of 24.68 ± 180 
0.32 Ma with 100% of the cumulative 39ArK. The 40Ar/36Ar isochron intercept of 299.3 ± 10.3 is within uncertainty 181 
of the atmospheric value (Lee et al., 2006). Holliday et al. (2022) report total fusion dates of thirteen sanidine grains 182 
from the Osiris Tuff, which produced dates ranging from 23.16 ± 0.08 Ma to 23.37 ± 0.04 Ma and a weighted mean 183 
age of 23.27 ± 0.05 Ma (MSWD = 1.60).  184 
 185 

 186 
Figure 3: Results of single crystal fusion 40Ar/39Ar analyses for the volcanic units overlying and within the Sevier gravity 187 
slide, and incremental heating result of the slide-generated pseudotachylyte. Height of each bar represents the 40Ar/39Ar 188 
date and 2σ uncertainty of a single experiment. The height of the shaded region behind Kingston Canyon Tuff, tuff of 189 
Tibadore, and Antimony Tuff represents the weighted mean with 2σ uncertainty of the shown analyses. n = number of 190 
single crystal analyses used to calculate the weighted mean, except for the pseudotachylyte, in which n refers to the number 191 
of incremental heating steps used to calculate a plateau age.  192 

 193 

4.2 Zircon U/Pb geochronology 194 

Zircon 206Pb*/238U dates from the Kingston Canyon Tuff (sample KCT) range from 25.11 ± 0.37 Ma to 195 
1871 ± 12 Ma (n = 122; supplementary materials). Precambrian grains (n = 5) and the single young zircon (n = 1) 196 
that is outside statistical uncertainty of the 40Ar/39Ar eruption age were excluded from calculations. The 206Pb*/238U 197 
dates produce a bimodal distribution (Fig. 4), with mixture model deconvolution peaks at 26.41 ± 0.06 Ma (29%) 198 
and 33.96 ± 0.05 Ma (54%) (Sambridge 1994; Ludwig, 2012). Zircon from the Mount Dutton Formation produced 199 
206Pb*/238U dates ranging from 25.13 ± 0.50 Ma to 1823 ± 15 Ma (n = 156). Grains older than 50 Ma were excluded 200 
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from calculations (n = 17). The 206Pb*/238U dates of the Mount Dutton Formation produce a fairly unimodal 201 
distribution, with a tail to slightly older (>30 Ma) dates. Mixture modeling deconvolution suggests the dominant 202 
population is 26.56 ± 0.04 Ma (78%). However, this value is skewed slightly older than the age of the peak (Fig. 4).  203 

The maximum depositional age (MDA) was estimated using maximum likelihood age algorithms (MLA; 204 
Galbraith and Laslett, 1993; Vermeesch, 2021). The MLA age for the Kingston Canyon Tuff of 26.13 ± 0.20 Ma 205 
(Fig. 5) is in agreement with the 40Ar/39Ar eruption age, but is significantly younger than the mixture modeling 206 
deconvolution age discussed above. The MLA for the alluvium of the Mount Dutton Formation is 25.24 ± 0.17 Ma 207 
(Fig. 5), again significantly younger than the deconvolution age.  208 
 209 

 210 
Figure 4: Probability distribution functions for U/Pb zircon dates from the Kingston Canyon Tuff (sample KCT) and 211 
overlying alluvium of the Mount Dutton Formation. Mixture modeling deconvolution ages and fraction of total grains are 212 
displayed for each mode. The dashed lines mark those deconvolution ages relative to the probability distribution functions. 213 

 214 
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 215 

Figure 5: Radial plots of zircon U/Pb data for the (a) Kingston Canyon Tuff and (b) overlying alluvium of the Mount Dutton 216 
Formation. MLA: Maximum Likelihood Age. Plots generated using IsoPlotR with the algorithms of Galbraith and Laslett 217 
(1993) and Vermeesch (2021) and a logarithmic transformation.  218 

 219 

5 Discussion 220 

Emplacement of the SGS was previously constrained to between 23.0 and 25.4 Ma based on a K-Ar age 221 
25.4 ± 0.9 Ma for the tuff of Tibadore, which is the youngest deformed volcanic unit in the SGS, and the 23.0 Ma 222 
age of the overlying, undeformed Osiris Tuff (Biek et al., 2019). This age was updated to between 26.2 and 25.1 Ma 223 
based on an age of 25.1 Ma for the Antimony Tuff, which post-dates emplacement, and an age of 26.2 Ma for the 224 
Buckskin Breccia, the youngest rocks underlying the SGS (Rowley et al., 1994; in press). The breccia itself had not 225 
been dated, but included clasts of the Spry and Showalter quartz monzonite intrusions which have similar intrusion 226 
dates (Biek et al., 2022). Loffer (2024) estimated an emplacement age of 25.5 Ma based on detrital zircon U/Pb 227 
dates from the basal layer of the SGS at two locations. The discovery of pseudotachylyte within the SGS offered an 228 
additional opportunity to refine the emplacement age; this work presents an 40Ar/39Ar age of 25.25 ± 0.05 Ma for 229 
SGS emplacement, consistent with previous estimates but with higher precision. The significant improvement in the 230 
plateau age uncertainty for the SGS experiment relative to the pseudotachylyte analysis of Holliday et al. (2022) is 231 
because the analyses were performed using the NGX-600 mass spectrometer, which has stable ATONA®-backed 232 
Faraday collectors (Mixon et al. 2022) and an incredibly low noise floor (Cox et al., 2020). As such a Bayesian 233 
statistical optimization age is not needed. Emplacement occurred approximately 170 kyr after the eruption of the tuff 234 
of Tibadore and immediately preceding the eruption of the Antimony Tuff. The slide may have occurred up to 130 235 
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kyr prior to the eruption of the Antimony Tuff, or may have occurred near simultaneously, given that the ages and 236 
uncertainties for the pseudotachylyte and Antimony Tuff are statistically indistinguishable. Importantly, because the 237 
pseudotachylyte had been found within the upper plate associated with subsidiary faults, it has been impossible, 238 
until now, to conclusively demonstrate it was formed during slide emplacement. The pseudotachylyte age reported 239 
here thus provides tight constraints on the timing of SGS emplacement, and confirms the catastrophic nature of 240 
emplacement, consistent with prior interpretations (e.g., Biek et al., 2019; Braunagel et al., 2023). 241 

The bimodal zircon U/Pb distribution of the Kingston Canyon Tuff suggests a significant zircon 242 
contribution from a previously crystallized subsurface magma. Xenocrystic inheritance is not observed in the 243 
40Ar/39Ar data, possibly due to the small number of grains analyzed. Interestingly, the U/Pb zircon record of the 244 
alluvium atop the Kingston Canyon Tuff does not contain a strong 34 Ma signal. This, along with the overall 245 
younger MLA of the Mount Dutton alluvium, suggests that the dominant sediment input was derived from a 246 
different source. The MLA of the alluvium at the basal layer of the slide is also identical to that of the 247 
pseudotachylyte, suggesting that the former land surface was 25.25 Ma when the pseudotachylyte formed. 248 

The Eocene Heart Mountain gravity slide in Wyoming is a comparable feature that is associated with 249 
igneous activity of the Absaroka volcanic field. Initiation of the gravity slide has been debated, ranging from 250 
incremental movement spanning millions of years (Malone et al. 2014), or catastrophic emplacement spanning 251 
several minutes to hours (Craddock et al. 2009). Recently, a lamprophyre suite (breccia, dike, diatreme) was 252 
identified at the base of allochthonous rocks. High-precision zircon U/Pb dating of the lamprophyre yielded dates 253 
that were identical to those obtained from other basalt cataclasites, leading to the interpretation that the eruption of 254 
the diatreme triggered the gravity slide (Malone et al., 2017).  255 

In both the MGSC and Heart Mountain, trigger mechanisms for gravity slides have been poorly 256 
understood; however, timing of igneous events relative to the sliding are essential for unraveling the relationship 257 
between the two types of events. In the Eocene Heart Mountain gravity slide, igneous activity apparently led to 258 
sliding, whereas in the Oligocene SGS, decompression associated with the gravity slide may have initiated the 259 
eruption of the Antimony Tuff. However, the timing of the intrusion of the magma body which became the 260 
Antimony Tuff is still unknown. Additional insights into the processes associated with Antimony Tuff’s pre-261 
eruption magma injection into the upper crust could be unraveled using detailed mineral analyses.  262 

6 Conclusion 263 

 New high-precision 40Ar/39Ar dating of key units involved in the SGS suggest an emplacement age of 25.25 264 
Ma ± 0.05 Ma. This is approximately two million years prior to the Markagunt gravity slide (Holliday et al., 2022). 265 
The emplacement model proposed here is that the slide was initiated from injection of magma, which led to slope 266 
failure. This prompted decompression and ultimately the eruption of the 25.19 ± 0.02 Ma Antimony Tuff. The 267 
association of magmatic intrusions and gravity slides was also proposed at Heart Mountain, Wyoming, suggesting 268 
that large-volume volcanic plateaus may generate these types of catastrophic events more frequently than previously 269 
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identified. Further, we begin to resolve the questions about causes for gravity slides (Hacker., 2014) and assess the 270 
relationship between igneous activity and mass movements.  271 
 272 
Data availability. All data used in this work are provided in the supplementary materials.  273 
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